鲁西南菜谱

您现在的位置: 首页 > 鲅鱼的做法大全 > 正文内容

七年级数学全册复习提纲有哪些

来源:鲁西南菜谱   时间: 2019-03-17

  全册提纲有哪些?整理一份复习提纲并不容易,比较懒的同学可以参考哦,以下是学习啦小编分享给大家的全册复习提纲的资料,希望可以帮到你!

  第一章 有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作a。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  1.3 有理数的加减法

  有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  有理数减法法则:减去一个数,等于加这个数的相反数。

  1.4 有理数的乘除法

  有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。

  有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

  两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

  求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

  负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

  把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

  从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

  第二章 一元一次方程

  2.1 从算式到方程

  湖州青少年癫痫病治疗方程是含有未知数的等式。

  方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

  等式的性质:

  1.等式两边加(或减)同一个数(或式子),结果仍相等。

  2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  2.2 从古老的代数书说起——一元一次方程的讨论(1)

  把等式一边的某项变号后移到另一边,叫做移项。

  第三章 图形认识初步

  3.1 多姿多彩的图形

  几何体也简称体(solid)。包围着体的是面(surface)。

  3.2 直线、射线、线段

  线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

  连接两点间的线段的长度,叫做这两点的距离。

  3.3 角的度量

  1度=60分 1分=60秒 1周角=360度 1平角=180度

  3.4 角的比较与运算

  如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

  如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

  等角(同角)的补角相等。

  等角(同角)的余角相等。

  第四章 数据的与整理

  收集、整理、描述和分析数据是数据处理的基本过程。

  第五章 相交线与平行线

  5.1 相交线

  对顶角(vertical angles)相等。

  过一点有且只有一条直线与已知直线垂直(perpendicular)。

  连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

  5.2 平行线

  经过直线外一点,有且只有一条直线与这条直线平行(parallel)。

  如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  直线平行的条件:

  两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

  两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

  两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

  5.3 平行线的性质

  两条平行线被第三条直线所截,同位角相等。

  两条平行线被第三条直线所截,内错角相等。

  两条平行线被第三条直线所截,同旁内角互补。

  判断一件事陕西中际中西医结合脑病脑科医院是不是正规大医院情的语句,叫做命题(proposition)。

  第六章 平面直角坐标系

  6.1 平面直角坐标系

  含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

  第七章 三角形

  7.1 与三角形有关的线段

  三角形(triangle)具有稳定性。

  7.2 与三角形有关的角

  三角形的内角和等于180度。

  三角形的一个外角等于与它不相邻的两个内角的和。

  三角形的一个外角大于与它不相邻的任何一个内角

  7.3 多边形及其内角和

  n边形内角和等于:(n-2)?180度

  多边形(polygon)的外角和等于360度。

  第八章 二元一次方程组

  8.1 二元一次方程组

  方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。

  把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

  使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

  二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

  8.2 消元

  将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

  第九章 不等式与不等式组

  9.1 不等式

  用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

  使不等式成立的未知数的值叫做不等式的解。

  能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

  含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

  不等式的性质:

  不等式两边加(或减)同一个数(或式子),不等号的方向不变。

  不等式两边乘(或除以)同一个正数,不等号的方向不变。

  不等式两边乘(或除以)同一个负数,不等号的方向改变。

  三角形中任意两边之差小于第三边。

  三角形中任意两边之和大于第三边。

  9.3 一元一次不等式组

  把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

  第十章 实数

  10.1 平方根

  如果一个正数x的平方等引起癫痫病的原因都有哪些于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。

  a的算术平方根读作“根号a”,a叫做被开方数(radicand)。

  0的算术平方根是0。

  如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。

  求一个数a的平方根的运算,叫做开平方(extraction of square root)。

  10.2 立方根

  如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。

  求一个数的立方根的运算,叫做开立方(extraction of cube root)。

  10.3 实数

  无限不循环小数又叫做无理数(irrational number)。

  有理数和无理数统称实数(real number)。

  第一梳理策略

  总结梳理,提炼方法。

  复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。如方案设计题型中有一类试题,不改变图形面积把一个图形剪拼成另一个指定图形。总结发现,这类题有三种类型,一类是剪切线的条数不限制进行拼接;一类是剪切线的条数有限制进行拼接;一类是给出若干小图形拼接成固定图形。梳理了题型就可以进一步探索解题规律。同时也可以换角度进行思考,如一个任意的三角形可以剪拼成平行四边形或矩形,最少需几条剪切线?联想到任意四边形可以剪拼成哪些特殊图形,任意梯形可以剪拼成哪些特殊图形等。做题时,要注重发现题与题之间的内在联系,通过比较,发现规律,做到触类旁通。

  错题,提升能力。

  在备考期间,要想降低错误率,除了进行及时修正、全面扎实复习之外,非常关键的一个环节就是反思错题,具体做法是:将已复习过的内容进行“会诊”,找到最薄弱部分,特别是对月考、模拟试卷出现的错误要进行认真分析,也可以将试卷进行重新剪贴、分类对比,从中发现自己复习中存在的共性问题。正确分析问题产生的原因,例如,是计算马虎,还是法则使用不当;是审题不仔细,还是对试题中已知条件或所求结论理解有误;是解题思路不对,还是定理应用出错等等,消除某个薄弱环节比做一百道题更重要。应把这些做错的习题和不懂不会的习题当成再次锻炼自己的机会,找到了问题产生的原因,也就找到了解题的最佳途径。事实上,如果考前及时发现问题,并且及时纠正,就会越快地提高数学能力。对其中那些反复出错的问题可以考虑再做一遍,自己平时害怕的题、容易出错的题要精做,以绝后患。并且要静下心来,通过学习、回忆,而有所思,有所悟,便会有所发现、有所提高、有所创新,便能悟出道理、悟出规律。

  第二答题策略

  首先,审题时注意力要集中

  思维应直接指向试题,力争做到眼到、心到、手到。审题时,应弄清已知条件、所求结论,同时在短时间内汇集有关概念、公式、定理,用综合法、或分析法、或儿童诱发癫痫病的原因两头凑的方法,探索解题途径。特别注意已知条件所设的陷阱,仔细审题,认真分析是否该分类讨论,以免丢解。

  其次,在答题顺序上,应逐题进行解答

  要正确迅速地完成选择题和填空题,有效利用时间,为顺利完成中档题和压轴题奠定基础。在逐题进行解答时,遇到一时解不出的题应先放下(别忘了做记号,以免落题),把会解的题目都做完后,再回来把留下的疑难逐一解决。

  第三,遇到平时没见过的题目,不要慌,稳定好情绪

  题目貌似异常,其实都出自原本。要冷静回想它与平时见过的题目、书本中的知识有哪些关联。要相信自己的功底,多方寻找思路,便能豁然得释。切忌对着题发呆不敢下手,有时动笔做一做或者画一画,就图形进行相应地分析,也就做出来了。尽可能解答一步是一步,不放过多得一分的机会。

  第四,解综合题时,应步步为营

  稳扎稳打,否则前面错了,后面即使方法对了,也得分甚少。

  最后,注意认真检查

  如感觉某题答错了,不能盲目去改,要十分冷静地重新审题,仔细研究,确定此时思路正确,再动笔去改,因为此时易把正确的改错了,尽量减少失误。检查在数学考试中尤为重要,它是减少失误的最有效途径。

  一、制定切实可行的复习计划,并认真执行计划。

  为使复习具有针对性,目的性和可行性,找准重点、难点,大纲(课程标准)是复习依据,教材是复习的蓝本。在复习时抓住学习中的难点、疑点及各知识点易出错的原因,这样做到复习有针对性,可收到事半功倍的效果。

  二、分类整理、梳理,强化复习的系统性。

  复习的重要特点就是在系统原理的指导下,对所学知识进行系统的整理,使之形成一个较完整的知识体体系,这样有利于知识的系统化和对其内在联系的把握,便于融合贯通。要做到梳理——训练——,有序发展,真正提高复习的效果。

  三、辨析比较,区分弄清易混概念。

  对于易混淆的概念,首先抓住意义方面的比较,再者是对易混概念的分析。全面把握概念的本质,避免不同概念的干扰,另外对易混的方法也应进行比较,以明确解题方法。

  四、一题多解,多题一解,提高解题的灵活性。

  有些题目,可以从不同的角度去分析,得到不同的解题方法。一题多解可以培养分析问题的能力。灵活解题的能力。不同的解题思路,列式不同,结果相同,收到殊途同归的效果。同时也给其他同学以启迪,开阔解题思路。有些应用题,虽题目形式不同,但它们的解题方法是一样的,在复习时,从不同的角度去思考,对各类习题进行归类,使所学知识融会贯通,提高解题灵活性。

  五、有的放矢,挖掘创新。

  机械的重复,什么都讲,什么都练是复习大忌,复习一定要有目的,有重点,要对所学知识归纳,概括。要有开放性,创新性,使思维得到充分发展,正确评估自己,自觉补缺查漏,面对复杂多变的题目,严密审题,弄清知识结构关系和知识规律,发掘隐含条件,多思多找,得出自己的。

  小升初是一场艰难的战役,需要我们的不断努力,但是光是努力使不够的,还需要掌握好的方法,才能使自己更上一层楼。行知小升初有计划地复习以及运用良好的对学好数学有很大的帮助。

北京军海癫痫医院
推荐阅读
本类最新

© cp.bzlxb.com  鲁西南菜谱    版权所有  京ICP备12007688号